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Within the limits of the ideal incompressible flow and Chaplygin gas models of the subsonic adiabatic motion of a perfect gas, 
exact solutions are constructed for the fundamental inverse variational boundary-value problem of aerohydrodynamics, namely, 
the problem of designing an airfoil of maximum life, on the assumption that the maximum velocity on its contour is limited. The 
term "variational inverse boundary-value problem" is used to designate a class of two-dimensional boundary-value problems 
with unknown boundaries, in which it is required to find both the solution of a partial differential equation and its domain of 
definition, where the latter satisfies some extremal property, and one boundary condition is specified on its boundary. The extremal 
property of the domain is expressed as the requirement that a certain functional be maximized or minimized (usually with further 
constraints). The existence and uniqueness of solutions is analysed, admissible domains of the parameters are indicated, examples 
are given of exact solutions, and an analysis is presented of the tendencies of the aerodynamic shapes being optimized to change 
when the theoretical angle of attack and maximum value of the velocity on the airfoil contour are varied. The so-called "shelf" 
distributions of velocity (with sections of constant velocity) are obtained as extremal. �9 2005 Elsevier Ltd. All rights reserved. 

Variational inverse boundary-value problems of aerodynamics constitute one approach to the optimiza- 
tion of aerodynamic shapes. In two dimensions, they consist of designing airfoils that possess optimized 
characteristics (maximum lift or aerodynamic quality, minimum drag, etc.). These methods make it 
possible to optimize airfoil shapes and turbomachine cascades in an ideal incompressible fluid, in 
subsonic gas flow, and in a viscous fluid at high Reynolds numbers. In their formulation, these problems 
may be classed, on the one had, as optimum design problems (see, e.g. [1]), and on the other as 
optimization problems for systems with distributed parameters [2]; through the use of the methods of 
the theory of inverse boundary-value problems they can be reduced to problems of classical variational 
calculus. At the same time, the presence or absence of further constraints may essentially alter the 
solvability situation. 

When solving variational problems, following the well-known approaches of [3-6], use has been made 
of the idea of constructing an operator acting on control functions of a given set and control parameters 
in a given interval, such that for every choice of control functions and parameters there is an object 
solving the problem and possessing the necessary properties (in the present case, an airfoil bounded 
by a closed, piecewise-smooth contour). 

One corollary of the results obtain by using the theory of inverse boundary-value problems of 
aerodynamics to solve aerodynamic optimization problems [4--6] is the fact that, among airfoils with 
one sharp edge and a given length of the contour perimeter, the highest lift in an ideal incompressible 
flow, uniform at infinity, is that of a disk. Being far from the needs of engineering practice, this solution 
is obtained analytically, assuming the minimum constraints dictated by the mathematical flow model, 
and it therefore gives an exact upper limit for the lift. Under physically meaningful conditions (flow 
without separation taking into account flow viscosity in the boundary-layer approximation, allowance 
of compressibility of the medium, etc.), even on the assumption that the functionals being minimized 
are strictly convex, it is impossible to prove that the extremal is unique. The situation becomes even 
more complicated when the airfoil drag coefficient or aerodynamic quality is the characteristic to be 
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optimized (even when explicit notation is used). As a result, the optimized solutions are considerably 
different from a disk, and they can only be computed numerically. However, with certain simplifying 
assumptions (in particular, a simple choice of the empirical constants in the criteria for flow without 
separation), one can again obtain strictly convex functionals and construct their extremals (see [6-11]). 

Previously investigated problems [6-11] may be categorized as variational inverse boundary-value 
problems of aerodynamics, and the solutions constructed make allowance, to some degree or another, 
for the conditions of hydrodynamic feasibility- the conditions of  physical feasibility of the solution (the 
suitability of the mathematical flow model, the assumption that the flow domain is single-sheeted, there 
is no boundary-layer separation, limitation of the maximum velocity on the contour, etc.) and the 
solvability conditions (constructive reliability). When that was done, no exact solutions of these problems 
other than a disk were observed. 

One of the natural conditions of hydrodynamic feasibility is to limit the maximum velocity on the 
contour. Situations have been described in which, when such a limitation is assumed, a unique solution 
of the variational inverse boundary-value problem exists which is not a disk. Such solutions will be 
constructed below and an analysis will be made of the tendencies of the optimized aerodynamic shapes 
to change when the initial, physically meaningful, parameters are varied. 

1. F O R M U L A T I O N  O F  T H E  F U N D A M E N T A L  V A R I A T I O N A L  P R O B L E M  

Among the many possible formulations of variational inverse boundary-value problems of aerodynamics, 
we shall choose one in which the solution of the problem corresponds directly to one of the common 
questions of aerodynamics: what is the maximum lift that can be achieved by an airfoil and what is the 
shape of such an airfoil? We shall present the formulation of the problem for an unbounded ideal 
incompressible flow. 

Physical formulation of  the problem. In the plane z = x + iy, we consider a steady flow without 
separation around an impenetrable isolated airfoil whose contour is smooth with the exception of a 
sharp trailing edge B(z = 0) (Fig. 1). The external angle at the edge is fixed and equal to en (1 < e < 2; 
at e = 1 the contour is smooth everywhere) and the perimeter of the airfoil contour is l = 2. The flow 
at infinity is uniform, horizontally directed, its velocity is ~ = 1 and is density p = 1. The rear stagnation 
point of the flow is z = 0 (where e > 1, by the Zhukovskii-Chaplygin hypothesis, this will be sharp edge 
B). The length scale is taken to be half the contour perimeter (in real airfoils, this is slightly different 
from the chord length). It is required to determine the airfoil shape yielding the maximum lift coefficient 
Cy, on the assumption that the maximum velocity on the contour does not exceed a given quantity 
1)max('Oma x > 1). 

The mathematical model and class of  contours to be optimized. We shall now write down the funda- 
mental relations defining the mathematical model of the problem just formulated and the class L of 
contours to be optimized, following the approach used in [6, 9, 12, 13]. 

The canonical domain will be the exterior of the unit disk 

E- = {~: 141> I} 

is the auxiliary ~ plane (Fig. 1). We will consider the unit disk in a flow whose velocity vector at infinity, 
of magnitude u, is directed along the abscissa axis, and such that the critical points B = e -/13 and 
A = -e :/~ on the unit circle (at which the velocity vanishes) are symmetrical about the vertical axis. Here  

~ [0, n/2] is the so-called theoretical angle of attack, which is generally a parameter of the optimization. 
The value of the angle 13 may be specified in advance, which imposes an additional constraint on the 
coefficient Cy in the optimization. 



Exact solutions of some aerodynamic optimization problems 667 

The flow around this airfoil in the physical plane is uniquely defined by the pair consisting of a 2rt- 
periodic control function P(y) ~ L2[0, 2re] (where L2[0, 2~] is the space of functions that are square- 
integrable over the interval [0, 2hi) that satisfies certain additional smoothness conditions to be specified 
later, and the parameter 6, 13 ~ [0, ~/2]. The flow domain is the image of E- under the conformal mapping 
Zp(~) normalized so that Zp(~O ) = 0% Zp(e"P) = O. 

The coordinates of the desired contour and the optimized functional (the coefficient Cy) are expressed 
analytically in terms of P(y) and ~ as follows: 

Y 

x(y) + iy(~l) = ze(e 'r) - ~ ~ exp[P(x) + iQ(x)] 2sin dx 
-8 

(1.1) 

21g 

Q('~) = Q l ( x ) + ( e - l ) - ' - ' T ~ ,  QI(Y) = - P(x)ctg dx 

Cy = 16rcsin13/Jo(P) 
(1.2) 

2~ 

= S exp[-P(x)] 2sin dx (1.3) Jo(P) 
0 

To ensure the existence of the singular integral Ql(x),  we require the function P(y) to satisfy a H61der 
condition with fixed coefficient and exponent; the set of all such functions is a compact subset of 
L2(0, 2~]. We also note that the derivation of the functional (1.3) makes essential use of the isoperimetric 
condition l = 2 (specification of the perimeter of the unknown contour) (see [5]). 

Furthermore, by the choice of x)~ = 1 and the requirement that the contours be closed, we have the 
equalities 

27t 21t 

f P(x)d'c = Bo, A I ( P  ) + iA2(P ) =_ f P('c)exp(i'c)d'c = B l + iB 2 Ao(P)  
(1.4) 

0 0 

B o = O, B l + i B  2 = - n ( E -  1)exp(-i13) 

(note that in the case that the second complex equality (1.4) fails to hold, the openness of the airfoil 
contour will be greater, the greater the difference between the above integral and the reduced value 
B1 + iB2). 

The distribution of the magnitude of the velocity over the airfoil contour may be expressed in a 
parametric form as follows: 

o(y) = 2exp[P(y)]cosY--~ 2 s i n ~ - ~  z-~ 

For convenience, we assume this quantity to be positive in the interval Y e [-13, n + 13] corresponding 
to the upper surface of the contour, and negative on the lower surface y e [n + 13, 2rt - 13] (where the 
direction of the flow around the airfoil is the reverse of that of the velocity vector). The requirement 
that the maximum velocity on the contour be bounded by the given number 1)ma x may now also be 
expressed in terms of the function P(y) and the parameter 13: 

I ~ a _ R  

P(y) < H0( Y, 13)- H(y, 13)+ ( e - 1 )  In]2 s i n L ~  

H(y, 13) = ln[o ,~ , lM(y ,  13)], M(y, 13) = [2(siny+ sin13)l 
(1.5) 

The results of many numerical experiments have shown that in the neighbourhood of the exact solution 
there are various approximate solutions (airfoils with both smooth and sharp trailing edges) that assign 
the functional to be minimized a value very close to the extremal value, but they differ considerably in 
geometry from the optimum contours. All this implies that the constructing of an exact solution of the 
problem is an urgent task. 
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2. T H E  E X I S T E N C E  AND U N I Q U E N E S S  OF T H E  S O L U T I O N  

We will express the control function in the form 

P(Y) = T ( Y ) + ( e - l ) I n  2 s i n a i  (2.1) 

After substitution into formulae (1.3) and (1.4), we obtain 

2n 

Jo(P) = I(T),  I(T) = ~ exp[-T(x)]dx (2.2) 
0 

Ao(T ) = AI(T ) = A2(T ) = 0 (2.3) 

and the constraint (1.5) becomes 

T(y) _< H(y, [3) (2.4) 

In the functional 1(7") and conditions (2.3) the parameter ~ is not related to the function T. Therefore, 
when there is no constraint (2.4), the optimum choice would be [5 = ~/2, corresponding to flow around 
the contour in which the branch point and rear stagnation point coincide. This conclusion is in complete 
agreement with the well-known fact (see, e.g. [14]) that the maximum velocity circulation in flow around 
a disk with critical points on its circumference is attained when the forward and rear stagnation points 
coincide. 

Thus, we have arrived at the following variational problem: it is required to determine a 2n-periodic 
H61der function P(?) that satisfies condition (1.4), (1.5) and minimizes the functional (1.3). Given the 
value 13 = [3" > 0 of the theoretical angle of attack, the problem is equivalent, by conditions (1.4) and 
(1.5), to the following: for fixed [3* and Vmax, it is required to minimize the functional I(T) in the space 
L2[0, 2rq under conditions (2.3) and (2.4). 

It follows from earlier results [5, 6] that I(T) is a strictly convex functional in the space L2(0, 2n), 
infT(v) ~ L2I(T) = 2re, and this infimum is attained for a unique function T(?) -- T.(?) -= 0 which does 
not depend on e. If Vmax --- 4, the function T.(?) automatically satisfies condition (2.4). In that case the 
required optimum contour is determined by the mappingz*(0  = (4 + i)/~ and is a circle of radius l#t, 
the flow around which is such that the branch point and rear stagnation point coincide. The absolute 
maximum C~ of the coefficient Cy in Eq. (1.2) is C~ = 8. Thus, as in the classical isoperimetric problems, 
in the variational inverse boundary-value problem of aerodynamics under consideration, when ~)max ~ 4 ,  

the extremal is a disk. In the case when "t)ma x _< 4 the constraint (2.4) plays an essential role in optimization. 

Theorem 1. Let . 

* = expsin13*, Vm~ Urea x ** = 2(1 + sinl3*) 

A necessary condition for the problem to be solvable is 

* (2 .5)  ~)max > l)max 

Moreover, if um~, >_ ~0 max* * , the unique extremal is a circle, but if u*ax <_ "Dma x < * *  "Omax, the extremal is not 
a circle. 

If  the set U of HOlder functions P('{) satisfying conditions (1.4) and (1.5) is not empty and condition 
(2.5) is satisfied, the problem has a unique solution. 

The assertions of Theorem 1 follow directly from the results of [12, 13], the strict convexity of the 
functional (1.3), the compactness in the space L2[0, 2rq of the set U (provided it is not empty), and the 
linearity of conditions (1.4) and (1.5). 

By Theorem 1, the problem will have a unique "non-circular" extremal only in the case when 
:g ** 

1)rnax --< 1)max < ~)max and, if 1)ma x is fixed, for 13 > ~max = arcsinlnumax. Thus, an admissible domain exists 
in which the parameters of the problem corresponding to "non-circular" extremals may vary, this domain 
being bounded above and below by curves whose equations are 1)ma x = 2(1 + sin[3) and a)ma x = expsinl3, 
respectively. If the point with coordinates (13, ~max) is in that domain, a unique optimum airfoil exists 
that is not a disk. If the point lies above that domain, the solution of the variational problem will be a 
disk, and if it is below the domain, there is no solution. 
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3. C O N S T R U C T I O N  OF AN E X A C T  S O L U T I O N  

The form of the extremal function P*(`/) enables us to establish the Kuhn-Tucker theorem (see, e.g. [15, 
Section 1.1.2]). Consider the extended functional 

2fr 

W(P) = ~ F(P, "c)dx - Jo(P) + Ito[Ao(P) - Bo] + Itl [Al(P) - BI] + It2[A2(P) - B2] + 
0 

2n 

+ f It(x)[P(x) - H0('L ~)ldx 
0 

The parameters/-to, B1 and It2 must be fixed in such a way that conditions (1.4) are satisfied, and ~t(y) 
is a non-negative function needed to guarantee the truth of condition (1.5). By the necessary condition 
for an extremum, the form of the extremal function P*(`/) is determined by the equation 3F/3P = 0: 

e*(`/) = (E - 1) In[2 sin-T-2-~[ - Ing(itk, It*; T) 

g(it/c, it . ;  T) -- B0 + Itl c~  + It2 siny + It*(`/) 
(3.1) 

where the parameters Itk(k = 0, 1, 2) and the function B*(`/) are such that g(Pk, It*; `/) > 0. The non- 
negative function It*(,/) is found from the so-called additional non-rigidity condition It*(`/) [P*(`/) - 
H0(`/, [3)] = 0 

It*(T) = max{O, Vm~M(`/, ~) - Ito - Bx cosy - It2sinT} (3.2) 

The velocity distribution corresponding to the extremal function P*(`/) is 

Iv*(]')[ = rnin{Vmax; ~itO M(`/, ~) 
+ It i c--.o..~ + i t  2 sin`/} (3.3) 

The minimum of the functional is 

2~ 

J* = Jo(P*) = 2nit o + f It*(x)dx > 0 
0 

Conditions (1.4) may be rewritten for the extremal function P*(`/) as 

(3.4) 

2it 2/t 

f lng(itk, It*; `/)d'}, = f Ing(itk , It*; y)exp(i`/)d T = 0 (3.5) 
0 0 

Note that the quantity J*, the function It*(`/), u*(`/), and Eqs (3.5) do not contain the quantity e, which 
determines the opening span of the angle of the airfoil at the trailing edge. Thus, the extremal we have 
obtained is the same for airfoils with sharp (e > 1) and blunt (e = 1) edges. However, as may be seen 
from Eqs (3.1), in the first case the function P*(`/) has a logarithmic singularity at y = -~; consequently, 
the solution does not fall into the given class and gives only an upper limit for the maximum Cy. But 
in the case of a blunt edge (e = 1) one can construct an airfoil for which this maximum is attained. 

By virtue of relations (1.3), (3.1) and (3.4), the exterior of  the unit disk is mapped conformally onto 
the domain of flow around an airfoil of optimum shape by a function Zp.(~) of the form 

z*( ; )  = 2 j- exp[O( ; ) ]d ;  (3.6) 

e-il~ 

where G(~) = (Slng)(~) is analytic in E-, its real branch is such that ReG(e iv) = lng(itk, It*; `/) on 
the circle, and ImG(oo) = 0; S is the Schwartz operator. In the special case when It*(`/) --- 0 (in the 
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absence of constraint (1.5)), representation (3.6) implies the previously obtained representation 
z*(~) = (~ + i)/n. 

We emphasize once more that the parameter s does not occur informula (3.6), and the images of 
the domain E- under the mappings (3.6) for different 13 and ~)max will have smooth boundaries. 
If e = 1, that will be the domain of flow about an airfoil of optimum shape. It will be shown below that 
for any [5 and 'Oma x these domains are symmetric about the vertical but not always single-sheeted. 

4. THE SYMMETRY OF THE O P T I M U M  S O L U T I O N  

Theorem 2. If the necessary condition for solvability (2.5) is satisfied, then ~tl = 0, ~t*(y) = ~t*(n - y), 
the velocity distribution (3.3) increases monotonically over the interval y e [-n/2, n/2], and if e = 1 the 
optimum contour has a vertical axis of symmetry. 

Proof. Let us assume that we have successfully determined a set of parameters ~ ,  ~s > 0, ~2 satisfying 
the solvability conditions (3.5). We will show that in that case the set of parameter ~ ,  -~1 < 0,  ~s also 
determines a solution of the problem. 

Making the change of variables x = n - y in Eqs (3.5), we obtain 

2~ -~ 2~ 

X(y)dy = O, ~X(y)cosydy = O, ~%(y)sinyd~/ = 0 
0 g 0 

where 

X(y)  = I n [ c o ( y ) -  ~t, c o s y  + 12(y)[, ~ ( y )  = ~t o + lx2siny 

~(y) = ~t*(n " y )  = max{O, Vm~M(y, ~ ) -  O~(y) + ~hcosy} 

To verify that the velocity function ~ (y) corresponding to the new set of parameters satisfies the 
required boundedness condition, we write the following chain of relations 

Iv,*<vt = M<~,  [~) = M(__~_~_) = Io*(~)1 </)max 
{D(T) -- ~1 COST {D('~) "1- ~1 COS'I: 

Thus, the velocity indeed satisfies the boundedness condition. Finally, after substituting the modified 
set of parameters ~t0, -~h, ~t2 and the corresponding function ~(y) into the necessary condition for an 
extremum, we can convince ourselves that these values also make the functional J0 a global minimum. 
Thus, the set ~t0, -~h < 0, ~t2 also determines a solution of the extremal problem under consideration, 
contrary to the uniqueness of the solution. Therefore ~tl = 0. Hence it also follows that ~t*(y) = 
~t*(n - y), so that it will suffice to confine our attention to the interval 7 e I-n/2, n/2], with the solution 
on the rest of the circle determined by symmetry. A corollary of this property is also that the part of 
the solvability conditions (3.5) containing cosx as a weighting function is also satisfied. If e = 1, the 
equality ~tl = 0 ensures that the corresponding optimum contour will symmetric about the vertical axis, 
as is readily verified by directly substituting the extremal function P*(y) into Eq. (3.6). 

Further, since ~h = 0 and the velocity on the upper surface is positive and that on the lower surface 
negative, it follows that c0(7 ) > 0 for y e [-[3, n + 13] (see (3.3)). Hence 

Then 

r = ~t o - ~ 2 s i n ~  _> 0 

v*'(y) = Lr2(sin~/+ sin[~"]' = 2 1 x ~ 1 7 6  J co(y, 2 Ym [-~'-~] 

Thus, the velocity distribution increases monotonically. 

Corollary. If 

2(1 + sin~) > Dmax(~0 + [s (4.1) 
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then in the interval It, n/2] where 

671 

t = arcs in[ (g0on~-  2sinl3)/(2 - la2Omx)l 

the velocity distribution u*(y) has a "shelf" ~ = 1)ma x. 
Computational experiments have shown that, in optimum shapes corresponding to the distribution 

(3.3) with 13 > 0, "shelves" cannot arise simultaneously on the upper and lower surfaces, though this 
still lacks a rigorous proof. If the hypothesis is true, then always 

v*(Y) = V*(T)~2(s inT+ sin13) [ - 2 ' t ] ;  t~*(T) = v2*(Y) = [ 2 ]  to(y) , T ~ v.,,~, T ~ t, (4.2) 

with t = n/2 if the reverse inequality to (4.1) is true, and then system for determining the parameters, 
taking the symmetry of the optimum velocity distribution into account, becomes 

~/2 x/2 

J" lnlo*(T)ldy = 0, j" lnlo*(u = *tsinl3 
-~/2 -x /2  

(4.3) 

Thus, the solution of the problem has been reduced to solving the system of non-linear equations 
(4.3) for determining the two unknowns !10 and ~t2. 

If constraint (1.5) is relaxed, then ~t*(T) -= 0 and system (4.3) becomes 

2It 211~ 

K0-= .[ lnlto(T)ld), = 0, K~ = .[ lnlto(y)lsinTdy = 0 
0 0 

Evaluation of the integrals K0 and Ka yields two solutions: kt2 = 2, lao = 0 and la2 = 0, la2 = 1. Since the 
first solution does not ensure that the function g(~tk, ~t*, y) will have a fixed sign, it may be ignored. 
Finally, we have 

g(gtk, l't*; T ) -  1, P*(Y) = ( ~ -  l) ln 2sin-~2~ I, J* = 27t 

The corresponding function is T*(y) -_- 0 (see (2.1)), and the optimum contour is the circle defined by 
the mappingz*(~) = (4 + i)/n. Thus, we have again obtained an extremal solution in the form of a disk 
(compare the results of [5]). 

5. I N V E S T I G A T I O N  OF THE SOLVABILITY OF SYSTEM (4.3) 

First of  all, let us consider the case I12 ~ 0. Put m = ~/la2. Transform the system of equations (4.3) using 
the following expressions for the integrals K0 and K1, obtained by evaluating them as contour integrals 
for Iml -< 1 and by differentiation with respect to m and then reduction to tabulated integrals for 
Iml > 1  

where 

K o = 2xlnllx2/2 ] + 2xTo(m), K 1 = 2 x m - 2 n T l ( m  ) 

To(m) = sign(m)ln[m+ m2,f~'l-lJ, r,(m) = sign(m) m , f ~ - l ,  if [mJ> 1 

To(m) = T I(m) = O, if Iml-< 1 

On the assumption that the formation of a "shelf" is possible only on the upper surface of the contour 
of the optimized airfoil, substituting expression (4.2) into Eq. (4.3) we obtain 

Oo(t, rn ) = Ro(t,m ), Ol(t,m ) = Rl(t,m ) (5.1) 
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COS t - -  . . Do(t,m)_ /__~_~tlo(t,m)+Fl(t,m) ' Ro(t,m)=m_Tl(m)+ cost ~ . .  n/-7~-~-tlot m) 

Dl(t,m)=expFo(t,m)-1ZTo(m) Rl(t,m)_ 2_.~ sin t+sinf3 
re/2 + t ' Vmax sint + m 

where 

x / 2  1t/2 

Fo(t, m) = / t i n 2 -  ~ lnRl(y, m)a~, Fl(t ,  m) = - ~ lnRl(y, m)sinydy 
t t 

Note that the condition v*(t) = 1)ma x implies an explicit expression for the unknown ~t2 in terms of 
the parameters t, m: 

2(sint + sinl~) (5.2) 
~2 -- Vmax(Sint+ m) 

By analysing the limits between which the unknown parameters !10 and IX2 are allowed to vary, the 
following conditions on m have been established 

- b + - l < m < l - b _  for ~ 2 < 0  

1 +b_<m<b+-I for O<lx2<amin{sin~, 1-sin[~} (5.3) 

b_-l<_m<_l-b_ for a(1-s in~)<~t2<_a 

where 

a = 2/l~ma x, b• = a(l+sinl3)/l~t2[; b _ < b +  

Note also that, by Theorem 1, the following inequalities are true for extremals that are not circles 

(1 + sinai) -1 < a < 2exp(-sinl3) 

Thus, we have to find a pair (m*, t*), a solution of the system of equations (5.1), where the intervals 
within which m varies in (5.3) depend on tx2, which is determined by the solution (m*, t*) from formula 
(5.2). Note that 

[1 + b_, b+-  1] c (1, oo), [b_- 1, 1 -b+] c (-sin]], sinl3), [-  1 -b+, 1 -b_]  ~ (_0% sin~) 

Investigations have shown that for any fixed t > 0 the function D0(t, m) increases monotonically as a 
function of m for m > -1, decreases monotically for m < -1, and is convex from above in both cases. 
Moreover, as I m l ~  ~,  

Do(t, m) = n(nl2 + t)-lcostlnlm[ + O(Iml) 

Thus, at infinity the function O0(t, m) increases logarithmically. It is obvious from the representation 
of the function Ro(t, m) (see (5.1)) that the behaviour at _+ ~ of the function Ro(t, m) is exactly the same 
(with the same coefficient of the logarithm). When [ m [ < 1 the function Ro(t, m) is linear. When m > 1 
the function Ro(t, m) first decreases monotonically, reaching a minimum at m = m* = (n/2 + t)/cost 
and remaining convex from below, but then increases monotonically and becomes convex from above. 
The function Dl(t, m) is strictly positive for any t, bounded, and consists of two branches, each of which 
tends to zero as m -~ _ ~, remaining convex from below. The function Rl(t, m) also consists of two 
symmetric branches with an asymptote at m = -sin t (as this value is approached from either side, 
Rl(t, m) increases without limit). As m --~ _+ ~ the function Rl(t,  m) tends to zero. 

The properties of the functions O0(t, m) and Ro(t, m), Dl(t, m) and Rl(t, m) described above, which 
have been established theoretically (some only for t > 0), have been corroborated for different values 
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o f t  by numerical experiments using the above analytical representations. Numerical experiments have 
shown that the system of equations (5.1) has no solutions for which m > 1, and each equation of system 
(5.1), considered separately for fixed t as an equation in m, has at most two roots - at most one root 
in each of the intervals specified in relations (5.3), with the exception of the interval (1, ~) .  

The system of equations (5.1) has been solved numerically, and computational experiments have 
confirmed that it is uniquely solvable. After finding all the parameters, it is not difficult to reproduce 
the shapes of the optimized airfoils. 

Now let I.t2 = 0 (recall that ~ and ~t2 cannot vanish simultaneously, and so ~ > 0). By (4.2), we have 

19"(7) = {(Ix0)-lM(7, 13), 7 e [-/r/2, t]; 19max, 7 ~ [t, ~/2]} (5.4) 

Thus, ~0 = ~axM(t, 13) and M(7 , 13) > M(t, 13) for all 7 e [t, re/2]. Since all the parameters except t are 
defined and their values must be such that Eqs (4.3) hold, we obtain two relations linking t, 13 and vmax. 
Substituting expression (5.4) into Eqs (4.3), we obtain 

itl2 ~r 

�9 M(7' 13)'~" 13) ' M(7' 13)sinTd 7 = 0 j" m ~ , ,  = - ~ l n  M(t----r~' . j ' u . ~  
/)max 

t t 

(5.5) 

As shown previously, if 7 ~ It, rc/2] the first integrand in (5.5) is non-negative. Thus, the left-hand 
side of the first equality is always positive, while the left-hand side of the second is positive for t > 0 
except when t = rr/2. In that case the second relation of (5.5) becomes an identity, while the truth of 
the first relation in (5.5) can be guaranteed only at ~max = 2(1 + sin13). We have again obtained an 
optimum contour which is a circle (see Theorem 1). 

Figure 2 shows the shapes of optimal airfoils and chord diagrams of velocity corresponding to the 
exact solution for e = 1 at 13 = 90 ~ and different values Of~ma x. The small circles on the contours represent 
coinciding branch points and rear stagnation points of the flow. It is obvious that the exact solutions 
have only a vertical axis of symmetry. Their characteristics are shown in table. 

In Fig. 3 we show the exact shapes of the optimum airfoils (contours 2) and the corresponding chord 
diagram of velocity (curves 1) for different 13 values and fixed ~max = 1.8. The small circles on the contours 
represent critical points. Table 1 lists the characteristics of these exact solutions. 

As noted in Theorem 1, for fixed 13 = 13", the velocity "/9ma x must satisfy the necessary condition (2.5) 
for solvability. It would be interesting to investigate the tendency of the shape of the optimum airfoils 
to change as ~max is increased, beginning from the value ~r*nax (the procedure described corresponds to 
motion along the vertical in the domain of admissible parameter values of the problem). Figure 4 
implements these ideas for 13" = 8 ~ (see also the table). It is obvious that as 1.)ma x increases the airfoils 
(contours 2) become thicker, the coefficient Cy increases, and the airfoils approach a disk, which they 

* *  - . * *  

become at Vmax = Vmax, (In this example, ~max, = 2.28). Conversely, as ~max decreases, the airfoils become 
thinner and, beginning from a well-defined value of ~max, become multiply-sheeted. Note that the 
leftmost airfoil in Fig. 4 is in effect a limiting case (when the value of Vmax is reduced further one obtains 
multiply-sheeted flow domains), though the cited values of maximum velocity are still far from the 
minimum possible value ~max* (in this case, Vmax* = 1.15). The chord velocity diagrams are labelled 1. 
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Table 1 

1)nu~x 

4 
3.4 
3.1 
2.9 

= 9 0  ~ 

t . , . x  Cy 

1 8 
1 7.95 
0.84 7.69 
0.22 6.62 

I~ = 8 ~ Oma x = 1.8 

Omax tma x Cy ~ tma x Cy 
2.28 1 
1.8 0.73 
1.5 0.36 
1.3 0.09 

1.11 
1.1 
1.05 
0.94 

10 ~ 
15 ~ 
20 ~ 
27 ~ 

0.66 
0.49 
0.3 
0.01 

1.37 
2 
2.53 
2.86 

An analogous picture is observed if the velocity ~)max is given some fixed value in the admissible interval 
[aJmax, Vmax] and [3 is increased up to its maximum admissible value ~max (this procedure corresponds 
to motion along the horizontal in the domain of admissible parameter values of the problem). Figure 3 
illustrates this procedure for ~max = 1.8. It can be seen that as 13 increases the airfoils thicken, the 
coefficient Cy increases, the airfoils approach an arc of a circle and, beginning at some well-defined 
value of 13 much less than [3max, one obtains multiply-sheeted flow domains (in the example given, 
~max = 36~  

Figure 5 illustrates optimum airfoil shapes (contour 2) for e = 1 and Dma x = 1.8, 13 = 28 ~ corresponding 
to a multiply-sheeted flow domain, and also, in enlarged form, the structure of the contour in the 
neighbourhood of the rear stagnation point of the flow (by symmetry considerations, the structure of 
the optimized airfoil in the neighbourhood of the forward stagnation point is the same). Note that the 
velocity chord diagram (curve I) differs slightly from two "shelves". 
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Figure 6 represents the maximum value Cy max of the lift coefficient as a function of "Oma x for different 
values, constructed on the basis of  the exact solutions. The right end of each curve for a given [3 value 

corresponds to an exact solution of the problem in the form of a circle. As ~)max decreases, Cym~x becomes 
smaller, and for each [~, in accordance with the necessary condition for the problem to be solvable (see 
Theorem 1), there is a minimum value Vmax* = expsinl3 of the maximum velocity on the contour. This 
value is represented by the left end of each curve. Thus, as ~max decreases in its admissible interval of 
variation, the coefficients Cym~ decrease by at most 8%, and for each 13 there is a certain minimum 
value of the maximum velocity on the contour, which necessarily reaches the given value of a3m~. 

We will now present the results of a comparison of the optimum airfoils obtained with a few known 
airfoils. Thus, the black dots in Fig. 6 represent values of the coefficient Cy computed for the Eppler 
airfoil E-61 (see, e.g. [16]); this airfoil has thickness of 6% and is also illustrated in Fig. 6) for a few 
values of "0ma x and for those ~ for which the corresponding maximum coefficients Cyma x for the same 
~)max values are represented by small circles in the graphs. The pairs of circles and black dots to the 
right of the graphs correspond to a comparison of the E-61 airfoil with a disk. As well see, the 
characteristics of the E-61 airfoil are fairly close to optimum. 
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6. A L L O W A N C E  FOR F L O W  C O M P R E S S I B I L I T Y  AT 
S U B S O N I C  SPEEDS 

As is well known, one approximate method to allow for compressibility is based on using the linear 
equations of gas dynamics, written in the hodograph plane of the velocity plane - Chaplygin's equations, 
which in the case of subsonic flow are 

-~  - K ( S ) -~--~, -~  = - K ( S )  - ~  (6.1) 

where q) is the velocity potential, ~ the stream function, 0 is the velocity argument, and K(~) and S(~.) 
are known functions of the reduced velocity ~. = via, ,  with a ,  the critical velocity. In adiabatic motion 
of a perfect gas for whichp = p~ (p is the pressure in units of the pressure at the forward stagnation 
point and ~ is the adiabatic index) 

2 h 2 = K+__~I S(k) = In 2kh +hln(h  --~2) 1~ + (1 --~2) 1/2 
(h E ~2)1/2 1~ 1 + h ' ~ -  1 - + h(1 _ k 2 )  

(6.2) 

It is well known that for air 0r = 1.41) the function K(k) differs from unity at L < 0.5 by at most 1.6%; 
for such ~. values, therefore, one can approximately put K = 1. As a result, the system of equations 
(6.1) yields the Cauchy-Riemann conditions, that is, the complex flow potential w = (p + iv  will be an 
analytic function of the variable ~ = S - i0. Under these conditions it follows from relations (6.2) that 

exp(S) 1 - c2exp(2S) 
MS) = 2 , p(S) = (6.3) 

1 - c  exp(2S) 1 + c2exp(2S) 

where C 2 is a constant of integration, chosen to satisfy the condition of best approximation of the adiabatic 
functions by relations (6.3). Following the well-known approach of [17], one can take c 2 = 0.296 or 
c 2 = [20r + 1)(1 - ~=)]-i, where ~= = "oJa, .  The flow model thus obtained is known as the Chaptygin 
gas model. It guarantees satisfactory accuracy in computations of the velocity field ~. in the subsonic 
domain. However [17], passage to a Chaplygin gas yields an error in the computation of the Mach 
numbers M from ~, since the Mach number for a Chaplygin gas does not formally reach unity; hence, 
when using the Chaplygin approximation, one usually determines only the velocity ~, and then calculates 
M by the exact formula. 

Within the limits of the Chaplygin gas model, the class of optimized contours is defined with the aid 
of a quasi-conformal mapping 

z(~) = I exp[-x(~)]w'(~)d~-c2exp[X(~)]w'(~)d~ (6.4) 

e-il~ 

with the substitution ~ = exp(iT). Here the control function is P(7) = Rez(exp(iT)) and 

d; 

where the bar denotes complex conjugation. Note that when c 2 = 0 Eq. (6.4) yields a representation 
for the model of an ideal incompressible fluid. The expression (1.2) for the lift coefficient and the form 
of the solvability conditions remain the same, only the constants Bo, and B1 and B2 in Eq. (1.4) being 
replaced by 

2 2 
c A ~  

B t + i B  2 = r t (1 -e ) -4g i s in [3  2_"--""~' B0 = 2~lnA.~ (6.5) 
I + C A ~  
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where 

A .  = A(~. ) ,  A(~.) = 2~,[1 +(1 +4C2~,2)1r2] -1 

Thus, the class L of contours under consideration is given by integral representation (6.4), in which 
the control function P(`/) satisfies constraints (1.4) (with the constants from (6.5) on the right), as well 
as constraint (1.3) with ~ma~ replaced by 2/('~/1 + 4c 2 + 1). The analogue of the functional (1.3) is the 
following strictly convex functional (for a detailed derivation see [8]) 

Jc(P) = 

2~ 

J" exp [-P(x)][1- c2exp[2P(x)]M2(%  >lz j):z s~n ~--~)'r+ a,'-, d'~ 
o 

which is identical with the functional (1.3) at c = 0 (corresponding to the transition to the model of an 
ideal incompressible fluid). Thus, in this case, maximization of the lift coefficient at fixed [3 requires 
minimizing the functional Jc(P) over the set of admissible functions P(`/) satisfying two linear constraints 
given by equalities, and one linear constraint which is an inequality. Unlike the case of ideal incompres- 
sible flow, in this situation the parameter 13 cannot take arbitrary values in the interval [0, rc/2]; in fact, 
the following theorem holds. 

Theorem 3 (see [13]). If 

exp( r . )  
~.. > ~*(1~), ~.*(1~) = 1 - c2exp(2r , )  

where r ,  is the unique root of the equation 

r - c o + D ( r , ~ )  = 0 

c O = In 
' 2 '  1 + ~ i + 4 c  

D(r, I~) -- sin~[l -c2exp(2r) ]  
[1 + c2exp(2r)] 

then for any airfoil in a flow of Chaplygin gas having a theoretical angle of attack equal to or greater 
than 13, there are points on the airfoil contour at which k > 1. 

The graph of the function L,o = ~.*([~) divides the domain of variation of the parameters ~.= and 13 
into two zones. If it is known that the airfoil being designed is in a Chaplygin gas flow with velocity L~ 
at infinity and theoretical angle of attack I~ such that the point (13, 9~0.) is above the aforementioned 
curve, then the airfoil produced by the Chaplygin gas model will have a supersonic zone. If the point 
(1~, ~,=) is below that curve, a subcritical airfoil with the specified characteristics can be designed. 

We will now construct an exact solution of the problem in the case when e = 1, following the scheme 
outlined above. The extended functional has the same form, except that J0(P) is replaced byJc(P), and 
the form of the extremal function P*(`/) is determined from the necessary condition for the functional 
to have an extremum: 

_lng(l~k, ~t; `/) + ~/g2(I.t k, ~t; ~/) -- 4c2M2(`/, ~) 
P*(`/) 

2 

The function ~t*(`/) corresponding to the exact solution is now 

I.t*('/) = max(0, J l  + 4c2M(`/, 13) - ~t0 - la, cos`/-  la2 sin`/} 

(6.6) 

(6.7) 

and the velocity distribution corresponding to the extremal function P*(`/) is 

I~*(`/)1 min 
Jg2(lxo,  0; `/) - 4c2M2(`/, fl) I 
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These expressions naturally yield formulae (3.2) and (3.3) if C 2 ---- 0. 
The system of equations in ~ ,  ~t I and ~t 2 is now derived from relations (1.4) by substituting the extremai 

function, with due note of expression (6.7), with the appropriate values of B0, B1 and B2 

2~ 

R(p. k, p.*(,/); ~)d,/ = B0 
0 

2~ 

~ R([.t k, g*(~/); ~[)ei'ld~ = B I + iB 2 

o 

lng(~k, p.*(~/); ~/) + ~/g2(~k, ~*(~t); ~) - 4c2M2(~/, 6) 
R ( ~ ,  ~t*(y); ?) 

2 

Note that the function (6.7), as in the case of an ideal incompressible fluid, has the symmetry property 

g * ( n - ~ ' ) ~ , = ,  = P-*('t)~,=-, 

When e = 1 this property, combined with the fact that B1 = 0, enables one to prove, as in the ideal 
incompressible fluid model, that the optimum solution is symmetric. 

We have thus derived exact solutions of the fundamental variational inverse boundary-value problem 
of aerodynamics for the Chaplygin gas model, as well as a system of equations to determine the 
parameters. Computations and results obtained in the case under consideration by constructing exact 
solutions for different choices of ~l and ~max values have confirmed the tendencies of the optimized shapes 
to vary, as shown and described above in the context of the ideal incompressible fluid model. 

Figure 7 illustrates exact solutions (contours 2) corresponding to e = i and [~ = 5 ~ at different Mach 
numbers M=, as well as chord diagrams of the velocity (curves 1). It is interesting to note that in some 
cases each of the extremal velocity distributions has two "shelves" (the cases M= = 0.4 and M= = 0.6 
in Fig. 7). This effect has not been observed for the ideal incompressible fluid model. 

We wish to thank A. N. Ikhsanova for carrying out the computations and for the results of numerical 
experiments report in the paper. 

This research was supported financially by the Russian Foundation for Basic Research (03-01-00015) 
and the "Universities of Russia" programme (UR 04.01.009). 

R E F E R E N C E S  

1. HASLINGER, J. and NEITTAANMJ/kKI, E, Finite Element Approximation for Optimal Shape Design: Theory and Application. 
Wiley, Chichester, 1988. 



Exact solutions of some aerodynamic optimization problems 679 

2. SIRAZETDINOV, T. K., Optimization of Systems with Distribution Parameters. Nauka, Moscow, 1977. 
3. LAVRENT'YEV, M. A.,An extremalproblem in airfoil theory. Trudy TsAGI im. N. Ye. Zhukovskogo, Issue 155, 1934. 
4. ZUBOV, V. I., The problem of the optimum airfoil in an ideal incompressible flow. Zh. Vyschisl. Mat. Mat. Fiz., 1980, 20, 1, 

241-245. 
5. YELIZAROV, A. M., Some extremal problems of airfoil theory, lzv. Vuzov. Matematika, 1988, 10, 71-74. 
6. YELIZAROV, A. M. and FEDOROV, Ye. V., Optimization of aerodynamic shapes by the method of inverse boundary- 

value problems. PriM. Mat. Mekh., 54, 4, 571-580. 1990. 
7. YELIZAROV, A. M. and FEDOROV, Ye. V., Solution of variational inverse boundary-value problems of aerodynamics by 

numerical optimization methods. Zh. Pn'kl. Mekh. Tekhn. FIZ., 2, 73--81. 
8. YELIZAROV, A. M., FEDOROV, Ye. V. and FOKIN, D. A., Variational inverse boundary-value problems of aerodynamics 

for subsonics gas flow. Zh. Vyschisl. Mat. Mat. Fiz., 1993, 33, 6, 958--968. 
9. YELIZAROV, A. M., IEINSKII, N. B. and POTASHEV, A. V., Inverse Boundary-Value Problems of Aerodynamics. Nauka, 

Moscow, 1994. 
10. FOKIN, D. A., Maximization of the aerodynamic quality of airfoils with a turbulent boundary layer. Izv. Ross. Akad. Nauk. 

MZhG, 1998, 3, 177-184. 
11. ELIZAROV, A. M. and FOKIN, D. A., Upper estimates of airfoil aerodynamic characteristics for a viscous incompressible 

flow. ZAMM, 1999, 79, 11, 757-762. 
12. YELIZAROV, A. M. and FOKIN, D. A., Variational inverse boundary-value problems of aerodynamics. Dokl. Ross. Akad. 

Nauk, 2001, 377, 6, 758-763. 
13. YELIZAROV, A. M., IL'INSKII, N. B., POTASHEV, A. V. and STEPANOV, G. Yu., Basic Methods, Results, Applications and 

Unsolved Problems of the Theory of Inverse Boundary-Value Problems of Aerodynamics. Trudy Mat. Tsentra ira. N. I. Lobachevskogo, 
Vol. 10. Izd. DAS, Kazan, 2002. 

14. LAVRENT'YEV, M. A. and SHABAT, B. V., Methods of the Theory of Functions of a Complex Variable. Nauka, Moscow, 
1987. 

15. IOFFE, E D. and TIKHOMIROV, V. M., Theory of Extremal Problems. Nauka, Moscow, 1974. 
16. EPPLIER, R., Airfoil Design and Data. Springer, Berlin, 1990. 
17. STEPANOV, G. Yu., Hydrodynamics of Turbomachine Cascades. Fizmatgiz, Moscow, 1962. 

Translated by D.L. 


